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Force fluctuations in a vertically pushed granular column
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Abstract. We present series of experiments on the resistance force encountered by a bottom piston pushing
a vertical granular column confined in a two-dimensional cell. We show that, due to the presence of friction
at the boundaries and between the grains, the signal shows many complex features. At slow driving
velocities, we observe a transition to a stick-slip dynamic instability. Depending on the granular material
used, the elementary stick-slip events may either be well characterized or largely distributed. We present
a statistical study on the waiting time between events and the distribution of energy release as a function
of the spring stiffness and the driving velocity.

PACS. 46.10.+z Mechanics of discrete systems – 05.40.+j Fluctuation phenomena, random processes,
and Brownian motion – 83.70.Fn Granular solids

1 Introduction and background

Granular materials form a very complex state of matter
which apparent behavior changes drastically with condi-
tions of solicitation (for a recent account on these issues
see for example [1,2] and Refs. inside). In a situation of
high strains, an analogy is currently made with standard
fluid hydrodynamics which is modified to include energy
loss due to dissipative collisions [3]. On the other hand,
the paradigm to understand the static or the quasi-static
behavior of grains is the celebrated Coulomb theory; it is
based on the phenomenological laws of solid on solid fric-
tion [4,5]. This last notion is strongly backed by some ex-
perimental facts. Actually when a granular volume yields,
the rupture surface is well defined with an angle that can
be related to an internal angle of friction, the analogous
of the Coulomb angle for solid friction. The existence of
such an angle is also essential to understand why a sand
pile may be built with a well defined slope. However this
idea is really justified only at the yield limit and when
other effects like dilatancy are neglected (see for example
Refs. [5,6] and Refs. therein).

Recently, some authors have revisited these issues: in
the case of static granular assemblies, new constitutive
relations were proposed, leading to a set of original pre-
dictions for stress distribution [7]. On the other side, the
response of a granular assembly to a quasi-static solici-
tation beyond the yield limit (like a slow shearing or a
triaxial deformation test), is not well understood. Prac-
titioners of soil mechanics have developed a framework
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where the notion of internal angle is extended to account
for macroscopic deformation in the spirit of a plasticity
theory [8,9]. As a consequence, new rheological parame-
ters are introduced on a semi-phenomenological basis [5].
But from a fundamental point of view, this approach is
not really satisfactory and presently, there is a vivid in-
terest in establishing a deeper understanding of the pas-
sage from a description of local granular contacts and force
distributions, to a macroscopic description of stress-strain
relations [10,11] or alternatively, any other constitutive
relations [13]. For example, it is still unclear whether or
when, a correct macroscopic description should include
fluctuating aspects of the stress, revealing the influence of
boundary conditions, material stiffness and/or the pos-
sibility of long range stable structures such as vaults
[14,15]. Recently, there were several numerical simulations
[12,16–19] or experiments [20–25] addressing directly this
issue. A problem is still to understand the emergence of
a continuous theory since only one of these experiments
has shown explicitly that the observed fluctuations, should
disappear in the large system limit [23].

There were also several early tests for the validity of a
Coulomb theory in the case of a solid interface sliding on
a granular assembly [26,35] and also more recent exper-
imental investigations [27–29]. This issue can be viewed
from a quite general perspective since the concepts in-
volved span many domains of science from confined molec-
ular systems under shear [30], to the dynamics of solid on
solid contact [31], up to the large scales of sliding geo-
logical faults [32]. Recently, this experiment was revisited
with much scrutiny and in particular, the focus was on
precursors of the static yield and on all the dynamical as-
pects of sliding [29]. A stick-slip dynamical transition was
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observed and was shown to depend on the velocity of the
driving mechanism which provides a striking analogy with
the real behavior of sliding solids [33].

The experimental situation we describe here bears
some resemblance with these previous experiments but in
a completely different geometry. We report a study on
an assembly of grains constrained in a 2D vertical con-
tainer and pushed vertically through the action of a pis-
ton. The piston is connected to a spring which other ex-
tremity moves at a constant velocity. We are interested in
the dynamics of the forces resisting to pushing. We pro-
pose that this resisting motion, which is also very peculiar
in view of its dynamical behavior, could be linked to an
“arching effect” induced by privileged force paths chan-
neling forces through the granular assembly. The presence
of boundaries as well as localized structures in the bulk
may introduce large variations in the resistance force, as
it was recently reported in the context of an annular cell
shearing [21,22] and also of an horizontal wall pushing a
granular assembly [23]. In this article we present mostly
the relevant phenomenological aspects of the experiment.
In particular, we are interested in the process of vault
building and in the distribution of elastic energy release
during the yield events. Note that a similar situation was
studied theoretically in the context of a scalar transport
model which also introduces arching effect as a key ingre-
dient for the granular resistance to pushing [34].

2 Experimental setup

The granular material is made of monodisperse steel or
aluminium spheres of diameter a = 1.5 mm. The use of
metallic beads of millimetric size allows to have a good
control of geometrical and mechanical properties. The ex-
perimental setup is schematically drawn in Figure 1. The
beads are placed in a rigid rectangular cell which confines
the assembly in a 2-dimensional vertical geometry. The
front walls are made of glass and the lateral walls of plex-
iglass. The distance between the front and back walls is
slightly larger than 1.5 mm which optimizes a situation
where the frictional resistance of the granular material
mostly takes place at the lateral walls. The typical co-
efficient of friction on plexiglass is about µw ≈ 0.6 for
aluminium beads and µw ≈ 0.5 for steel beads. The mea-
sured coefficient of friction is µ = 0.4−0.5 for oxidized Al
beads on an abraded aluminium substrate and µ = 0.2
for steel beads on a substrate of the same material. The
width of the cell is L = 64 mm, corresponding to a row of
42 beads. The aspect ratio S of the stacking – defined as
the ratio of the number of beads in the height to the cor-
responding number in width – may be varied by adding
some horizontal rows. The 2D geometry was chosen for
several reasons. First, due to the mono-dispersity of the
beads, the packing is ordered into a very stable triangular
lattice and this situation of maximal compacity can easily
be reproduced before each experiment. Second, the con-
fined geometry allows a direct visualization of the packing
and this information will be of interest when we provide
an analysis of the different events.

Fig. 1. Experimental setup: the driven piston pushes upward
the granular material confined in the 2-dimensional cell. Some
inox beads are crimped on each side of the piston in order to re-
duce friction with boundaries. The granular material is ordered
into the triangular lattice and relaxed before each experiment
by moving the piston downwards.

The experimental procedure goes as follows: the low-
est beads are pushed upwards by a piston which stands
on a spring. The spring is mounted on a plateau which
is driven at a constant speed V by the translation stage
of a stepping motor. The dynamic range of V may be
chosen between 0.05 and 50 µm/s. The experiment con-
sists in recording the pushing force F when the piston
moves upwards. The stiffness of the spring k is varied by
using two devices: a set of cantilever springs with dif-
ferent thicknesses or lengths and the beam of an elec-
tronic scale. The typical k values for the cantilever springs
are between 1000–6000 N/m and for the beam we have,
k = 32285 N/m. In the first cases the resistance force is
deduced from the deflection of the free end of the can-
tilever spring. This deflection is detected by an inductive
displacement sensor. A preliminary set of experiments was
performed without bead in the cell in order to determine
the level of mechanical and electronic noise of the set “pis-
ton + column”.

3 Experimental results and discussion

3.1 General presentation

In a granular material, vertical stresses are transformed
via contacts between the grains into horizontal stresses
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pushing the vertical boundaries. The laws of solid on solid
friction tell us that the normal stresses applied to the walls
should be transformed into a friction force opposing the
vertical motion. Based on this elementary idea, a simple
estimate of the yield frictional forces can be done using the
heuristic Janssen’s theory [5,35]. This theory introduces
a parameter K which transforms any vertical pressure Pv
into an horizontal one Ph = KPv. It is clear that this
theory is only approximate [5] but a priori, it should pro-
vide a good estimate of the order of magnitude for the
static pressure in a granular column subject to its own
weight [25]. In our case, the pushing of the piston pro-
duces an upward motion of the beads, which leads to a
downward polarization of frictional forces at the lateral
walls. By adapting the Janssen’s model to this configura-
tion we derive a qualitative expression of the resistance
force of the granular packing to the pushing. The detailed
calculations are presented in the appendix. The main re-
sult is that the pushing force F , as measured in our ex-
periment, should increase exponentially with the height of
the stacking; a value of F can be estimated depending on
the friction at the walls. In the framework of this model,
it is also possible to estimate the influence of the third
dimension stemming from the fact that our experiments
are not strictly 2D which could add some supplementary
friction. To prevent blocking of the beads inside the cell,
we leave a small gap between the glass plates and the
beads of approximately: e ' 0.1 mm. As a consequence,
there is a residual transmission of the vertical pressure
into an horizontal pressure on the glass walls, via the non
strictly vertical direction of contacts between the spheres.
This effect results in a slightly larger force F ∗, dependent
on the ratio e/L. In the appendix we also estimate this
supplementary friction force.

Now, we report two sets of experiments where the fric-
tional nature of the metallic beads is changed, i.e. steel
beads where the friction is low and aluminum beads where
the friction is high. At this point, it is worth noticing that
a friction between the beads is essential to produce resis-
tance to pushing. In fact, if no friction would exist be-
tween the beads, nothing would prevent the beads in con-
tact with the edges to roll like in a bead bearing device
and therefore, no resistance would be experienced by the
piston. It is in fact the frustration of the rotational mo-
tion induced by the multi-contacts on the beads which
“solidifies” the force network and allows a rigid transmis-
sion of forces from the piston to the edges. It is clear that
such a feature should intervene somehow in any concep-
tual representation of the resistance dynamics. This is not
obvious from equation (A.3) where all the force network
properties are captured into a single effective parameter
K. Moreover, due to a certain amount of unavoidable poly-
dispersity (see Ref. [17]) and also to solid friction between
the grains (see Ref. [19]), we are in a situation where the
network of contact forces could be quite disordered, even
if the apparent structure of the piling can be viewed as
regular. As a consequence, all the dynamical properties of
the resistance dynamics experienced by the pushing pis-
ton, can a priori, come not only from standard solid on

solid dynamical friction laws but also from the compli-
cated force network dynamics which is a signature of the
granular aspect of the material.

3.2 Steel beads

The typical response for the set of experiments we per-
formed with steel beads is presented in Figure 2 for pa-
rameters: S = 1.44, k = 32285 N/m and V = 0.1 µm/s
(Fig. 2a), V = 1 µm/s (Fig. 2b) V = 5 µm/s (Fig. 2c).
From the curves force/distance, we observe, after a fast
initial increase of the resisting force, a quasi-plateau or a
slowly evolving state. In none of our experiments we can
claim that we reached a true steady state. The yield force
is always around 2−4 N. It turns out that we empirically
observe an increase of the force/distance slope with the
amplitude of the driving velocity V . This effect deserves
a more systematic study but we leave this for further re-
ports. Direct visualization through the glass walls shows
that there is no reorganization of the triangular packing
and no macroscopic dilation of the stacking. Using the es-
timation predicted by equation (A.3), we obtain a value of
F = 0.72 N (after addition of the piston mass Mp = 32 g).
Use of the modified Janssen’s constant of equation (A.4)
would yield: F ∗ = 0.73 N, which is an increase of less than
one percent which cannot account for the factor 4 found
experimentally. We also checked that a screening length λ
with a value half of this one (e.g. a value of K twice as
large as before) was still unable to provide a correct esti-
mation for the resisting force. The second remark is that
the fluctuations around the average resisting forces can be
quite different according to the value of the driving veloc-
ity. Actually for the stiffness and the aspect ratio men-
tioned earlier, we evidence a dynamic transition around
V ∼ 1 µm/s. Below V = 0.5 µm/s, we observe a well de-
fined stick-slip regime (see inset Fig. 2a). Note that, for
the “stick” part of the dynamics, we tested in several in-
stances that the relations force/displacement correspond
to the known spring constants. Nevertheless we did not
precisely test for the existence of a possible “creeping”
dynamics just before the yield events. This could be inter-
esting but is out of the scope of this article since the time
resolution of the data sampling was too large to monitor
these effects. Around the value V ∼ 1 µm/s, we observe an
intermittent response made of stick-slips and a fluctuating
plastic yield (see inset Fig. 2b). Above this velocity, the
stick-slip disappears completely and a fluctuating plastic
yield response is found (see Fig. 2c). This behavior is rem-
iniscent of general properties of solid on solid friction. For
a spring-block system, driven at a constant velocity on a
solid substrate, a transition exists from a stick-slip dynam-
ics to a steady-sliding regime. This transition depends on
the eigenpulsation of the spring-block system and on the
driving velocity V [33]. At low V or low eigenpulsation, a
stick-slip appears and occurs periodically with a constant
amplitude ∆F = Fmax − Fmin. Let us remind that in the
simplest solid-on-solid friction model, the static µs and the
dynamic µd coefficients of friction are different (µs > µd)
and the force drop is ∆F = 2(µs − µd)mg where mg is
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Fig. 2. Fluctuations of the pushing force F as a function of
the displacement of the translation stage at the velocity V .
The experiments are done with steel beads with S = 1.44
and k = 32285 N/m. The three figures and their zoom on
a reduced distance scale are representative of the different dy-
namical behaviors. (a) V = 0.1 µm/s. The force fluctuates
around a plateau value. The insert with the saw-teeth signal
corresponds to a succession of stick-slip events. This figure is
typical of what happens in the stick-slip regime. A modulation
of the force on a typical distance scale δ can also be observed.
(b) V = 1 µm/s marks the transition from (a) to (c). The
response is intermittent. At certain times the signal changes
abruptly from a well defined stick-slip regime like in (a) to a
fluctuating response like in (c) and inversely. (c) V = 5 µm/s.
The fluctuating plastic yield response is characteristic of the
high velocity regime.

Fig. 3. Distribution of the characteristic parameters of the
stick-slip regime in the case of steel beads for S = 1.44, k =
32285 N/m and V = 0.1 µm/s. (a) Distribution of the waiting
time ∆T between stick-slip events. (b) Probability distribution
function of energies ∆E released during the phases of slips. The
two distributions are well fitted by Gaussian curves (solid line).

the weight of the solid slider. Now we identify each stick-
slip event by detection of the maxima Fmax just before a
slip and the subsequent minimum Fmin at the beginning
of the following stick. Only events corresponding to an
amplitude of slip ∆F = Fmax − Fmin larger than a given
threshold are stored. We don’t take into account fluctua-
tions of the signal which are inside the noise level. After
identification of all the events occurring during an experi-
ment, we store for each one Fmax, Fmin, the amplitude of
the slip ∆F , and the waiting time ∆T . Also, we determine
the energy release ∆E of the yield event by calculating:

∆E =
1

k

[
Fmax∆F −

1

2
(∆F )2

]
. (1)

In opposition to the classical results for solid-on-solid fric-
tion on a multi-contact interface, ∆F , ∆E and ∆T do not
have constant values but fluctuate around a mean value
and their distribution is well fitted by a Gaussian curve
(see Figs. 3a and 3b). We also evidence, in some instances,
a modulation of the force drop amplitude with a period
corresponding to a displacement of the translation stage δ
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Fig. 4. Fluctuations of the measured force normalized by the
total weight of beads and piston as a function of time for dif-
ferent aspect ratios S. From top to bottom: S = 1, S = 2/3
and S = 1/2 for aluminium beads. The three curves are plot-
ted with the same vertical and horizontal scales but for clarity
they are vertically shifted (by −4.5 for S = 2/3 and by −6 for
S = 1/2).

of typically a fraction of a bead diameter (see δ in Fig. 2a).
We did not observe any systematic variations of δ with the
driving velocities. We do not understand the origin of this
slow dynamical response but it could correspond to the
manifestation of an internal dynamics involving restruc-
turing of the force network in association with the rolling
motion of the beads. Note that a modulation was also
reported in another experiment on granular friction [29].

3.3 Aluminium beads

Now we describe results obtained for a packing of eroded
aluminum beads where the response to vertical pushing is
quite different. Importantly, we observed that for Al beads
the triangular close packing ordering is not maintained
through the whole experiment and close to the boundaries,
the system experiences some decompaction. In Figure 4 we
display three typical signals obtained with different aspect
ratios S. The signal is really much more complicated and
fluctuating than in the case of steel beads. The force are
normalized by the total weight of piston plus beads and
the vertical and horizontal scales are the same for the
three values of S. It clearly appears that the maximum
amplitude of the normalized frictional force is connected
to the aspect ratio. The higher is the stacking, the stronger
are the resisting forces. This evolution could be a priori
explained by the exponential increase of the resisting force
with the packing heightH (see Eq. (A.3)). But, as for steel
beads, the quantitative estimation is much smaller than
the experimental measurements. For example, the typical
forces obtained with an aspect ratio S = 1 are between

Fig. 5. Fluctuations of the force F as a function of time. The
spring stiffness is k = 5410 N/m and the velocity of the step-
ping motor is V = 0.68 µm/s. (a) the full experiment with
the occurrence of big events (b) zoom of the preceding graph
showing the small events (stick-slip).

F = 0.7 N and F = 13 N which is the maximum value
of F allowed with our experimental device. Anyway these
values are much larger than what equation (A.3) would
simply predict (F = 0.42 N).

In the following we consider only the case S = 1 cor-
responding to an equal number of aluminium beads along
the width and the height of the cell. A typical diagram of
the pushing force F as a function of time and a zoom of
this signal on a reduced time scale are plotted in Figure 5
for V = 0.68 µm/s and k = 5410 N/m. We notice that the
forces resisting to the vertical pushing have a high level of
fluctuation (Fig. 5a) and that the signal is made of series
of stick-slip motions of the packing (Fig. 5b). Note that for
larger velocities the stick-slip response disappears as for
steel beads. These stick-slips are rather disordered. If we
observe the signal on a larger time scale, we note a general
trend for a slow and progressive increase of the resistance
forces. This increasing resistance to pushing is eventually
followed by an extremely fast drop of the pushing force
characterized by an event of quite large magnitude com-
pared to the typical stick-slip event. By inspection of the
granular packing, we noticed that these large force drops
are associated with large macroscopic rearrangements tak-
ing the form of convection rolls at the lateral walls, appari-
tion of cracks destroying the triangular order or global and
important sliding of the packing as a whole. In the curse of
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Fig. 6. Log-log plot of the mean duration of a stick-slip event
〈∆T 〉 times the spring stiffness k as a function of the stepping
motor velocity V . The straight line has a slope of −1 and fits
rather well the data obtained for k = 5410 N/m. All the points
correspond to an aspect ratio of 1. The inset shows the typical
distribution of the duration ∆T of the stick-slip events for one
particular experiment performed with k = 5410 N/m and V =
0.68 µm/s.

an experiment, we observed only few of such “big events”
(about 10 maximum on a total displacement of 100 mm)
but a tremendous amount of small stick-slips (typically
1000 in a given experiment). Note that these big events
are not observed in the case of steel beads where there is
no macroscopic reorganization of the stacking and where
the signal of force remains nearly flat.

In the case of aluminium beads, the stick-slip is not
periodic and the waiting time between “slip” events ∆T
is more distributed than for the steel beads (see inset
of Fig. 6). We measured that the mean duration of an
event 〈∆T 〉, depends on the driving velocity and on the
spring stiffness like in the standard stick-slip regime of
a solid sliding on a surface. The log-log plot of k 〈∆T 〉
versus V clearly shows a tendency for a law of the type:

〈∆T 〉 = 〈∆F∗〉
kV where 〈∆F ∗〉 is a typical amplitude of force

decrease. For the aspect ratio S = 1 the value of 〈∆F ∗〉 is
0.360 ± 0.015 N; it corresponds to a constant length scale
∆l = 〈∆T 〉V = 66± 3 µm for a stiffness k = 5410 N/m.
Note that this force value is not far from the total weight
of piston plus beads.

Due to the non-periodicity of the stick-slips, the force
release ∆F during an event is expected to be also largely
distributed. Unlike solid-on-solid friction the amplitude of
∆F is not at all constant but shows large fluctuations be-
tween the “small” and “big” events. Moreover, the ampli-
tudes of slips globally increase with time as the local mean
force defined by Fmean = (Fmax+Fmin)/2 increases. This
effect is illustrated in Figure 7a when we display a zoom
on the rising part just before a large yield event. This am-
plification effect is much more visible and systematic at
low velocities (V = 0.68 µm/s) but also exists for larger
velocities as it can be seen in Figure 7b for V = 5.06 µm/s.
On this picture, we observe that after the occurrence of a
“big event” (indicated by an arrow in Fig. 7b), the am-

Fig. 7. (a) Evolution of the force with time for V = 0.68 µm/s
showing the amplification effect: as the mean force increases
with time, ∆F also increases. (b) Amplitude of slip ∆F as a
function of time for V = 5.06 µm/s.

plitude of ∆F dramatically drops and reaches about only
1% of the preceding ∆F value. Then after this collapse,
the fluctuations are again progressively amplifying with
time and the average resisting force increases again. The
amplification of ∆F from one stick-slip event to the other
seems to be connected to the progressive building-up of a
resistant structure over a long time period. This is what
we call a vault in the context of this experiment. Inversely,
after the occurrence of a big event leading to a global rear-
rangement of the stacking, the typical force drops ∆F , go
to very low values. It seems that there is no more memory
of the previous resisting forces in the packing and that
strong arches which might have existed in the packing
are completely destroyed. It is not clear yet what triggers
these “big events” when the resistant force becomes high:
it could be some external mechanical vibration or some
intrinsic properties defining the maximum resistance of a
vault [14,23]. After the occurrence of a big event, the pack-
ing slowly reorganizes itself in order to develop increasing
resistance to the vertical motion.

Another way of investigating the dynamics of vault
building is to look at the energy release ∆E during each
event of slip. The statistical distribution of this parame-
ter allows to distinguish clearly the behavior of steel and
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Fig. 8. Probability distribution function of energies ∆E re-
leased during the phases of slips for three different stepping
motor velocities. The straight line has a slope of −2 and fits
the data for small events in the case V = 27.7 µm/s.

aluminium beads. The response of the aluminium beads
packing is characterized by a very large distribution of en-
ergies which span over more than three decades in ampli-
tude. The probability distribution function of ∆E is plot-
ted in Figure 8 on log scales. A power-law regime seems
to occur over two decades for the different velocities but
it is limited by an upper cutoff around ∆E ∼ 10−3 J. Ap-
parently the exponent of the power-law is around −4/3
for smaller energy drops and for larger ∆E closer to −2.
This last result should be taken as just indicative due to
limited statistics on large ∆E events. Note that large sta-
tistical distributions of event sizes were previously found
in a model experiment of friction with macroscopic asper-
ities [36]. In this last experiment, the disorder was already
present in the distribution of force drops but in our case,
this distribution is rather peaked: the disordered response
reflects more clearly on the elastic energy distribution, this
is a direct consequence of the “vault building” effect.

4 Discussion and concluding remarks

In conclusion, we presented a series of measurements in-
vestigating the fluctuating aspects of the resistance force
of a granular assembly pushed vertically by a piston and
confined in a 2-dimensional cell. The response to this so-
licitation was studied for two classes of material: steel (low
friction) and aluminium (large friction) and for different
spring stiffness and driving velocities. In both cases the re-
sisting force is larger than what simple plastic estimation
based on a Janssen’s law would predict. At slow push-
ing velocities the signal is made of elementary stick-slip
motions which fluctuate in amplitude but which average
properties recall standard solid-on-solid friction laws. On
the other hand, fluctuations of the resisting force are quite
different for steel and for aluminium beads. In the case
of steel beads the pushing force is on an average con-
stant or slowly increasing. At low velocities, we observe
the transition to a stick-slip instability characterized by

rather regular features distributed on Gaussian curves. On
the other hand, for aluminium beads, the signal is much
more complex and fluctuating. At low velocities, the el-
ementary stick-slip events seem to combine to provide a
very large resistance to the pushing motion. This resis-
tance can be overcome only via major rearrangements of
the granular assembly. The small stick-slip events have a
large distribution of energy release which takes the form
of a power-law distribution with an exponent between −2
and −4/3. We interpret qualitatively this phenomenology
by the progressive making up of arches which are priv-
ileged paths channelling the force exerted by the piston
to the boundaries. This effect could provide a mechanical
structure very resistant to the pushing motion. The possi-
bility for aluminium beads to create strong arches might
be due to a higher coefficient of friction compared with
steel beads. We also underlined the possible importance of
rotational frustrations but the physical mechanism really
involved remains unclear. These preliminary results raise
many fundamental questions and call for further investiga-
tions. At first, a more complete study is needed to under-
stand how and when the stick-slip regime occurs. Then, a
question arises on how these effects would be transported
in general 3D situation. Note that these properties may
have important practical consequences in many instances
where the granular aspect of the matter is essential to con-
trol the rheological properties. For example, the industrial
problem of the extrusion of dense pastes could be one of
these. Finally, the emergence of power-law distributions of
elastic energy release in association with friction forces, is
an issue deserving more scrutiny by analogy with general
geophysical laws characterizing the distribution of seismic
events.
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Appendix

Janssen’s analysis

The standard analysis of Janssen is based on the division
of the packing of beads into homogeneous horizontal slices.
It introduces a parameter K which transforms any verti-
cal pressure Pv into an horizontal one Ph = KPv. The
calculation is straightforward if one write the equilibrium
of an horizontal slice of height dz with a vertical elemen-
tary frictional force dFr = εµwPhadz = εµwKPvadz at
one plexiglass wall. This supposes that the friction force
is everywhere at the yield limit. The parameter ε = ±1
allows a choice in the friction force direction, which can
be upwards (ε = −1) or downwards (ε = +1) depending
on the direction of motion. Note that we have chosen the
positive direction downwards and that the coordinate z
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corresponds to the depth in the packing. Thus we obtain:

−
dPv

dz
+ ρg + ε2µw

K

L
Pv = 0 (A.1)

where ρ is the effective density of grains and g is the ac-
celeration of gravity. Note that this first order differential
equation only allows for one boundary condition. One usu-
ally uses the boundary condition Pv(0) = 0 at the top of
the stacking in order to predict the pressure for a ver-
tical column at rest. Thereby the usual Janssen’s law is
recovered for a stacking under its own weight (ε = −1):
Pv(z) = ρgλ

(
1− exp(− z

λ)
)

(Eq. A.1) where the screening
length λ is defined by

λ =
L

2Kµw
· (A.2)

Case of a downward frictional force

In our case the pushing produces an upward motion, then
ε = 1. By using the same boundary condition as before, we
obtain Pv(z) = ρgλ

(
exp( zλ)− 1

)
. This expression holds

for a complete downward polarization of the frictional
forces at the walls. In this simplified mechanical vision,
the pushing force F at a steady-state, is assumed to ad-
just exactly to compensate the action of gravity combined
with the friction at the walls. Therefore, when the granu-
lar column yields, the pushing force F is:

F = Pv(H)La+Mpg

F = ρg
L2a

2Kµw

(
exp

(
H

λ

)
− 1

)
+Mpg (A.3)

where Mp is the piston mass and H is the height of the
stacking.

Effect of the third dimension

In this part we attempt to take into account the residual
transmission of the vertical pressure into an horizontal
pressure on the glass walls due to the small gap e be-
tween the beads and the glass plates. We use an argument
à la Janssen by adding a supplementary term on the left

side of equation (A.1): εµfw
Kf

a Pv, where µfw and Kf

are respectively, the friction with the frontal glass walls
and a Janssen’s coefficient in this direction. Therefore,
the vertical pushing force has the same structure as in
equation (A.3) but with a modified Janssen’s coefficient:

K∗ = K

(
1 +

Kf

2K

µfw

µw

L

a

)
. (A.4)

Estimation of the parameters K and Kf

Now we need an estimation for the Janssen’s coefficients.
We use the geometrical estimation proposed by Bouchaud

et al. [7] and measured directly by Eloy et al. [19] on a
regular piling. The angular direction ϕ of force propaga-
tion with respect to the vertical axis, is introduced and we
have: K = tan2 ϕ. Thus we get K = 1/3 (with ϕ = 30◦)

andKf '
(
a
e

)2
(with ϕ ' a/e). Measurements of the bead

friction with a glass plate gives µfw ' 0.1, which allows
determining the effective parameter K∗ and the modified
pushing force F ∗ in every experimental cases we describe
in this paper.
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